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Abstract-A micro-mechanical model is employed to study the elastic stress-strain behavior of
heterogeneous granular solids. The granular material is idealized as a collection ofspherical particles
interacting through inter-particle contacts. Based on this idealized model an equivalent continuum
description of the granular solid is envisaged and the overall stiffness tensor of the granular solid is
determined in terms of the stiffness of the inter-particle deformation. To facilitate the derivation of
overall stiffness tensor, the granular solid is considered to be composed of continuum cells made of
a single particle and the associated void space. A local stiffness tensor is defined for each cell. The
local stiffness tensor is obtained in terms of the inter-particle stiffness, the number of contacts and
the relative position of the neighboring particles. The local stiffness tensor is utilized to obtain the
overall behavior ofa representative volume ofgranular solid through the "selfconsistent" averaging
technique. The overall stress and strain for the representative volume are determined as a volume
average of the corresponding local quantities. To account for the heterogeneity of deformation in
the granular medium, a "concentration" factor is defined for each cell. Based on the concept of
volume averaging and the "concentration" tensor an overall stiffness tensor is derived for the
granular solid. The applicability of the derived micro-mechanical model is evaluated by comparing
its results with those obtained from the computer simulation method.

INTRODUCTION

The effective stiffness of a granular solid is significantly dependent upon the inter-particle
contact stiffness and the geometric arrangement of particles. Recently, based upon micro­
mechanical considerations ofinter-particle interactions, a number ofefforts have been made
to obtain the effective moduli of granular materials accounting for the contact stiffness and
packing structure. Some of these consider regular packing arrangements (Chang et al.,
1989), others consider random packing structure, however, with some simplifying assump­
tions (Digby, 1981; Walton, 1987; Jenkins, 1987; Bathurst and Rothenburg, 1988; Chang,
1987). The primary assumption made in the above analyses is that granular solids deform
in accordance with a uniform strain field. Although these micro-mechanical based models
effectively account for inter-particle interactions and packing arrangement, their applic­
ability is limited due to the uniform strain assumption (Chang and Misra, 1990).

In all the aforementioned analyses, little effort has been made to model the stress­
strain behavior ofgranular solids accounting for the heterogeneity at a particle level. Efforts
have been made to characterize the fluctuations from uniform strain fields [such as Koenders
(1987) and Chang (1989)]. By considering the equilibrium of particle clusters consisting of
a particle and its neighbors, Koenders (1987) has presented an analysis of two-dimensional
granular systems to derive expressions for corrections to the uniform strain stiffness. In
Koenders analysis as well, a uniform average strain field governs the deformation of all
the clusters in the granular assembly while fluctuations are admitted within each cluster.
Most importantly, the interactions between the clusters are neglected. By considering higher
order strain tensors to represent the heterogeneity of deformation fields, a stress-strain
relationship was derived for granular packings (Chang, 1989; Chang and Liao, 1990). In
this approach the order of strain tensors required to best represent the heterogeneity is
difficult to specify.
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On the other hand, the "selfconsistent" method, which has been successfully employed
in modelling the effective properties of heterogeneous materials such as polycrystals and
composites [see for example Hill (1967) and Hutchinson (1970)], offers a powerful technique
to account for heterogeneity. In this paper, the general framework of the "self consistent"
method is used in conjunction with the micro-mechanics based modeling scheme to develop
an effective stress-strain relationship of granular solids accounting for heterogeneity. The
micro-mechanics scheme is useful for describing constitutive law at a local level for a micro­
element, while the "self consistent" method provides a tool for describing the effect of
interactions among the micro-elements.

A key requirement for modelling the effective properties based on the "self consistent"
method is the description of local behavior. In contrast to polycrystals and composites, the
description oflocal stress-strain behavior, for granular solids, poses a unique problem since
it must account for the inter-particle interaction. In this paper, the local stress-strain
relationship is established at a particle level based upon the methodology developed in
micro-mechanical studies [such as Chang and Misra (1990)J. The local constitutive law is
derived by considering the interaction of a particle with its neighbors. The local stiffness
tensor is obtained as a function of the relative position of the neighboring particles in
contact, the number of contacts and the inter-particle contact stiffness. Note that due to
the random nature of granular solids, the local stiffness tensor is different at each particle
location.

By defining the local constitutive law, a granular solid can be conceptually viewed as
a continuum material composed ofcells (local volumes) with a local stiffness tensor assigned
to each cell. Such a continuum system is analogous to a material with randomly varying
stiffness. The overall stress-strain relationship of a representative volume of such a con­
tinuum system, consisting of a large number of particles, can be determined in terms of the
local constitutive law through the "self consistent" averaging process. This is achieved by
employing Hill's averaging principle (1967) and a "concentration" tensor. The "con­
centration" tensor acts as a weighting function which accounts for the heterogeneity of
granular system. It is noted that the "concentration" tensor is, in general, different for each
cell. The "concentration" tensor is obtained by considering an analogous problem to the
Eshelby's classical boundary value problem of a single inclusion in an infinitely extending
homogeneous material. In this regard, the method followed here is similar to that used
for modelling effective properties of polycrystals [such as Hutchinson (1970)]. It is also
noteworthy that the uniform strain assumption used in previous micro-mechanics based
studies is equivalent to assuming the "concentration" tensor to be an identity tensor.

In what follows, we first discuss an equivalent continuum description and a discrete
description of the idealized granular system. Further developments are focussed on the
equivalent continuum approach. We first describe the kinematics of granular media with
the purpose of defining strain in granular media. We then proceed to derive a local stress­
strain relationship at a continuum cell and an overall stress-strain law for a representative
volume of the granular solid. Finally, some examples are presented to demonstrate the
capability of the model as well as to verify some of assumptions made in this model.

PROBLEM DESCRIPTION

Idealized granular system
We consider an idealized granular material consisting of circular particles arranged

randomly in space which support imposed loads at the boundary through resistance at
inter-particle contacts. It is assumed that all the particles have same stiffness properties.
The particles are also assumed to be bonded together such that there is no loss or gain of
contacts. With the intent of keeping the discussions simple, the attention of this paper is
focussed on the elastic portion of granular deformation.

Under an arbitrary deformation of the granular assembly, the relative displacement
[lim between two particles, m and n, is given by
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(1)

where Ui = the particle displacement, Wk = the particle rotation, rj is the vector joining the
centroid of a particle to the contact point, the superscripts, nand m, refer to the particles
and eijk is the permutation symbol. The tensor summation convention is used for the
subscripts throughout this paper.

The relative movement between particles in contact leads to development of contact
forces which are modeled using the Hertz-Mindlin model of two non-conforming elastic
bodies in contact (Mindlin and Deresiewicz, 1953). The contact force /; and the relative
displacement 1J;m are related via the stiffness Kij as follows:

(2)

where Kij is also referred to as the contact stiffness tensor. For the numerical examples in
this paper, the contact stiffness tensor is represented by the following simple form

(3)

where Kn and K s are the contact stiffnesses along the normal and tangential direction of the
contact surface respectively. The unit vector 0 is normal to the contact surface and vectors
sand t are arbitrarily chosen such that ost forms a local Cartesian coodinate system. Also,
for simplicity, the contact stiffnesses are taken to be independent of the contact force unlike
the Hertz-Mindlin contact stiffnesses. It is noted that the present analysis assumes that
there is no resistance to relative rotation between particles, hence no moments are trans­
mitted at the inter-particle contacts.

For the idealized granular system considered here, two alternative mathematical rep­
resentations may be envisaged, namely: (1) an equivalent continuum description; and
(2) a completely discrete description. The focus, herein, is on the equivalent continuum
representation of the discrete granular system.

Equivalent continuum system
For the purposes ofcontinuum description, the granular media is conceptually viewed

to be composed of continuum cells. To preserve the discrete nature, however, the local
stiffness tensor is derived in terms of the inter-particle interaction and relative locations of
neighboring particles in accordance with the micro-mechanical modelling scheme [see
Chang and Misra (1990)]. For convenience, the continuum cells are considered to be
"Voronoi" polyhedra constructed of a single particle and associated void space. The size
of these cells is given by vn = V~(l +e) where vn is the volume of the nth cell, V~ is the
volume ofthe particle in the cell and e is the void ratio of the granular media. The "Voronoi"
polyhedron is found to be specifically useful in capturing the heterogeneity at each location
of the granular system.

For the equivalent continuum system, the governing equations are obtained by con­
sidering the condition of static equilibrium at each point, such that for the nth cell

and

aij,i = 0 (4)

(5)

where uij is the Cauchy stress tensor and (,) comma represents differentiation. It is assumed
that couple stresses are not transmitted in the idealized granular system considered here.
This implies the symmetry of the Cauchy stresses [see eqn (5)].

The boundary conditions are specified as either displacement or traction boundary
conditions as in the usual continuum mechanics. The boundary conditions may be written
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(6)

for the displacement boundary conditions, where Bi) is the symmetric applied strain, Xi is
the position vector of the boundary point, and Uj is the displacement of the boundary.
Alternatively,

(7)

for the traction boundary condition, where iii) is the symmetric applied stress, nj is the
normal at the boundary surface, and j; is the force acting at the boundary.

The governing equations, that is eqns (4), (5), (6) and (7), along with the local stiffness
tensor completely define the equivalent continuum system. However, it is more desirable
to describe the average or overall behavior of an element of granular media containing
several particles. The "self consistent" averaging method offers a powerful approach for
obtaining the overall stress-strain behavior of a collection of particles. In this regard, the
"self consistent" method similar to that used for polycrystals, albeit in a more generalized
setting, is utilized here to obtain the overall stiffness tensor for the granular media.

Discrete system
Although the focus of this work is on continuum modeling, for the sake ofcompleteness

and contrast we digress briefly to discuss a discrete representation of granular media. In
contrast to the equivalent continuum representation, the governing equations of discrete
representation are obtained by considering the particle equilibrium in terms of the contact
forces and moments generated from interaction with neighbors and any externally imposed
force or moment acting at the particle centroid. Thus, for the mth particle in the assembly,
equilibrium equations are written as

and

F7'-If'r = 0

M m '\' fm. m. 0
i - 1... eijk j rk = ,

•

(8)

(9)

where F7' and M7' are the externally imposed force and the moment acting at the centroid
of the mth particle, f'r is the force acting at the octh contact of the mth particle and the
summation is carried out over all the contacts of the mth particle. Note that contact moment
is neglected. For the particles within the granular assembly which are not located at the
boundary no external load is acting therefore F7' = 0 and M7' = O. For the particles at the
boundary the particle force and moment may be non-zero.

The boundary conditions, in the discrete representation, are specified in terms ofeither
the displacement and rotation or the force and moment on the centroid of the boundary
particle. Since, in the laboratory experiments it is difficult to apply rotations and moments
on the boundary particles, the boundary conditions may be written as

(10)

for the displacement boundary conditions, where Bi) is the symmetric applied strain, Xi is
the position vector of the particle centroid, and Uj is the displacement of the boundary
particle. Alternatively, for the force boundary conditions,

(11)

where iii) is the symmetric applied stress, A is the surface area associated with the particle,
nj is the normal at the boundary surface, and j; is the force acting at the centroid of the
boundary particle.
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Equations (8) and (9) with (10) or (11) define the governing equations and the boundary
conditions for the discrete system. Based on these, the problem can be formulated in terms
ofsimultaneousequations connecting the particle displacements and rotations to the particle
forces and moments. The solution of these simultaneous equations forms the numerical or
computer simulation method developed by Serrano and Rodriguez-ortiz (1973) and dis­
cussed in Chang and Misra (1989). A dynamical form of the discrete representation of the
granular system considering inertial forces has been developed by Cundall and Strack
(1979).

KINEMATICS OF PARTICLE ASSEMBLY

For the purposes of continuum modeling, we express the displacement and rotation
of a particle as a part compatible with the overall average strain of a packing and a
fluctuation part that varies from particle to particle. Thus, the relative displacement from
eqn (1) becomes: .

(12a)

or

(12b)

where, 1'('" = X'l' - X'/ is the branch vector joining the centroid of the nth particle with its
mth neighbor. In eqn (12), the terms with bar (-) represent the averages, the terms
with tilde (-) represent the fluctuations, and the displacement function <Pi> introduced for
convenience, is given, for say the nth particle, by

(13)

In eqn (12), the average strain tensor, ejj , defined to include the effect of particle rotation,
is expressed as (Chang and Liao, 1990)

(14)

where Uj.j is the overall or average displacement gradient, and cOk is the average particle
rotation. The strain tensor defined in eqn (14) is, in general, non-symmetric. The con­
ventional definition of strain tensor is recovered by taking the symmetric part of the
distortion, e(kl)' which is identical to the symmetric part of the displacement gradient U(I,k)'

The non-symmetric part represents the net particle rotation in excess of rigid body rotation
[see Chang and Misra (1990)].

To characterize the fluctuation terms in eqn (12), the equilibrium of the particles in
the assembly is considered. From force equilibrium of the nth particle, we get

em/I:. Kij'"I':' - ;PrE K'!r +'L, Kijm<pj =0
'" m m

and for its mth neighbor, we get

emj'L,K7jPI'::,P-<pj'L,K7jP+ 'L,K'!jP<p,/ =:: o.
p p p

(15a)

(15b)

Similar equilibrium conditions may be written for the neighbors of the mth neighboring
particles, and so on. Since, for the present discussion, the particle rotations need not be
determined explicitly, only force equilibrium is considered. The fluctuations of particle
rotations may be determined explicitly by considering the moment equilibrium of the
particles as well. For example, moment equilibrium of the nth particle yields



2552 A. MISRA and C. S. CHANG

eqp L ejjkK,}';I~mr'km - ($~ Lej;kK'}';'r'km+L eijkK'}';r'r($; = O.
m m m

(16)

Similar equations may be written for other particles in the assembly. The rotations may
now be obtained by simultaneously considering eqns (15) along with eqn (16).

For further discussions, it is convenient to rewrite the force equilibrium condition for
the nth particle [eqn (15a)] as

(17)

where

(18)

Similarly, the force equilibrium of the mth particle [eqn (15b)] is rewritten as

(19)

and so on for other particles in the assembly. Equations (17) and (19) along with similar
equilibrium equations for other particles in the assembly yield a set of 3N equations for N
particles in terms of the fluctuations, ($'), etc. From the solution of this set of simultaneous
equations, the fluctuations, ($') and ($j, are conveniently written in terms of the average
strain tensor, ejj, as

(20a)

and

(20b)

The first term on the right-hand side of eqns (20) involves only the nearest neighbor as seen
from eqn (18), while the second term involves terms associated with all the other particles
in the assembly.

Thus, from eqn (12b), the relative displacement D';m can be written in terms of the
average strain tensor, ekl' as

(21)

where Dj/ is the Kronecker delta. In eqn (21), r']kl denotes the term describing the influence
of the nearest neighbors on the nth particle and R'}kl denotes the remainder terms describing
the influence of other particles in the assembly on nth particle, where

(22)

In order to evaluate the remainder term [eqn (22)], a knowledge of the complete con­
nectivity of the particles in an assembly is required. Consequently, it is desirable to
simplify the analysis. To this end, we define a local average strain in the neighborhood of
nth particle denoted by eklo such that the relative displacement Dr can be written in terms
of the nearest neighbors only, as follows:

(23)

where the local average strain ekl is given by
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(24)

In eqn (24), liekl is defined as the fluctuation strain in the neighborhood of the nth particle.
For the equivalence ofrelative displacements given in eqns (21) and (23), the fluctuation

strain liekl is related to the overall average strain Bkl via

(25)

Equation (25) represents three equations for each contact of the nth particle while nine
components of the fluctuation strain liekl need to be determined. Thus, for a particle with
three contacts explicit solutions of fluctuation strains are possible and eqn (23) is exact.
However, for particles with other than three contacts, the system of equations based on
eqn (25) is either over determined or under determined, that is explicit solutions of fluc­
tuation strains are not possible. Moreover solving eqn (25) is undesirable since it still
requires the complete connectivity of particles in the assembly. Therefore, we need an
alternative estimate of the fluctuation strain liekl in terms of the overall average strain Bkl'
Clearly, the accuracy of eqn (23) will depend upon this estimate of the fluctuation strain
liekl'

For estimating fluctuation strain liekl in terms of the overall average strain Bkl' we note
that the problem at hand is analogous to one from continuum mechanics regarding strain
distributions in an inhomogeneous material with randomly varying local stiffness tensor.
In this paper, we adopt the powerful "self consistent" technique for the determination of
local strains. Although the "self consistent" method is expected to yield an approximate
relative displacement at a contact, it provides considerable simplification in the derivation
of the overall stress-strain relationship. In a later section, we examine the capability of the
"self consistent" technique via comparison with results of the discrete approach. These
numerical examples show a close agreement between the relative displacements obtained
from the discrete method using eqn (I) and those from eqn (23) based upon the "self
consistent" scheme.

Since a key requirement of the "self consistent" method is the local stiffness tensor,
our immediate task is to establish a local stress-strain relationship which we describe in the
next section. The "self consistent" method will be discussed in the section thereafter.

LOCAL STRESS-STRAIN RELATIONSHIP

The local stress-strain relationship is defined at each particle of the granular media or
cell of the equivalent continuum media, such that for the nth cell

(26)

where the superscript n refers to the cell and Cijkl is the local stiffness tensor. The local
stiffness tensor Cijkl is derived in terms of the contact stiffness and the relative position of
the neighboring particles. The derivation is facilitated by considering: (a) the relationship
between local strain and relative movement of the particle in the cell with respect to
neighboring particles [given in eqn (23)] ; (b) the interaction of two particles [given in eqn
(2)] ; and (c) the relationship of local stress and contact forces. The local stress (Jij for the
nth cell is given in terms of the contact forces IT as (Christoffersen et al., 1981)

(27)

where vn is the volume associated with the nth particle.
Thus, using eqns (2), (23) and (27), the local stiffness tensor Cijkl is found to be
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1 1
Cn " InmKnm Inm " InmKnmrn

ijkl = 2-j/"- L. I jl k - 2Vn L. i jr rkl'
m m

(28)

The stiffness tensor thus obtained is a function of the packing structure measures Ii and Vn,

and contact stiffnesses Kn and K.,. The local stiffness tensor Cijkl is, in general, asymmetric
with respect to the interchange of leading as well as terminal pairs of indices. However, due
to the symmetry of the contact stiffness tensor Kij, the local stiffness tensor has the following
symmetry:

C7i kl = C7lki'

Cijkl = C'klij'

STRESS-STRAIN RELATIONSHIP FOR GRANULAR SOLID

(29a)

(29b)

To obtain the overall constitutive law, we consider a given volume of the granular
solid. This given volume is assumed to contain enough particles in order to be representative
of the material behavior of the granular solid. The representative volume is conceptually
equivalent to a point in the conventional continuum media. Thus by defining the overall
stress, strain and stiffness tensors for this representative volume, we seek to homogenize
the granular media. Note that the stress and strain fields (i.e. local stresses and strains) are
highly heterogeneous within the representative volume. In the subsequent discussion, the
overall quantities are defined for a representative volume as average of the heterogeneous
local quantities. Additionally, we define a relationship between the local strain and the
global strain via a "concentration tensor". The "concentration tensor" is determined using
Eshelby's analysis commonly employed in the "self consistent" method.

Volume averaging
We employ the method of volume averaging to relate the local field quantities to the

corresponding overall quantities. The volume averages are written as

_ 1 n n
Cij=V LVCij,

n

(30)

(31 )

where au and Bij are the overall stress and strain tensors defined for a representative volume,
aij and cij are the local stress and strain tensors defined at a cell level, V is the volume of
the representative volume given by L vn where summation is carried over all the particles

in the volume. This definition of overall stress and strain has been shown to hold under both
displacement and traction boundary conditions provided the displacements or tractions are
compatible with a uniform overall strain or stress (Hill, 1967).

The field quantities within the representative volume may themselves be written as the
summation of the average term uniform everywhere and a fluctuation term for each cell
such that for stresses

(32)

and for strains, from eqn (24),

(33)

We also define a volume average stiffness tensor Cijkl in terms of the cell stiffness Cijkl as
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(34)

In the selfsame manner of eqns (32) and (33), the stiffness within the volume may also be
written as the summation of a quantity uniform everywhere and a fluctuation term

(35)

Clearly, by definition the volume average of fluctuation terms will vanish, that is

(36)

The aim of the paper is to relate the overall stress and strain tensors through an
effective stiffness tensor, such that

(37)

where Cijkl is the effective stiffness tensor of the homogenized equivalent continuum. It is
remarked that the effective stiffness tensor C ijkl is, in general, different from the volume
average stiffness tensor Cijkl • The volume average stiffness tensor Cijklo defined in eqn (34),
is the effective stiffness of the representative volume if and only if the strain field within the
volume is uniform (Chang and Misra, 1990).

Concentration tensor
To proceed with our objective of deriving the effective stiffness tensor we recall our

discussion regarding eqns (23) and (25) in view of eqns (26), (30) and (37). In light of this,
it is expedient to relate the local strain eij to the overall strain Bij through a, as yet unknown,
"concentration" tensor H':nnkl such that

(38)

From eqn (31), it can be seen that volume averaging requires

(39)

where [ijkl is a fourth rank identity tensor defined in terms of the Kronecker delta (jij (where
(jij = 1 for i = j; = 0 for i =I- j) as

(40)

Thus the effective stiffness tensor Cijkl can be written in terms of cell stiffness tensor
Cijkl as [from eqns (30), (31), (37) and (38)]

(41)

It now remains to obtain the unknown "concentration" tensor H':nnkl to completely
define the overall stiffness tensor in terms of known quantities. To this end we consider the
continuum cell to be an inhomogeneity with stiffness Cijkl embedded in an infinite medium
of stiffness Cijk' We employ the method of obtaining the stress disturbance due to the
presence of an inhomogeneity in an infinite media first discussed by Eshelby (1957) for
isotropic elastic materials.

In this discussion hereafter, we consider, for conceptual simplicity, the representative
volume to be an infinitely continuum media. This assumption is reasonable in the view that

SAS 30:18·1
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the volume occupied by each cell is infinitesimally small compared to the size of the
representative volume itself. From the condition of static equilibrium within the rep­
resentative volume, denoted by Y, of effective stiffness Cijkl , we get

aij.i = 0 in Y. (42)

Let this representative volume be subjected at the boundary, S, to displacements compatible
with a uniform overall strain ekl' that is

(43)

Consider embedded within this media a single inhomogeneity, V", of stiffness Cijkl' The
stress within this media is now given by

(44)

(45)

where V - Y" is the region outside the inhomogeneity. Following the essence of the method
by Eshelby, the stress within the inhomogeneity, V", can be expressed in terms of the
stiffness of the outer media by

(46)

where etl is an "equivalent transformation strain". The "equivalent transformation strain"
can in turn be related to the strain in the inhomogeneity. Note that though the "equivalent
transformation strain" is conceptually similar to the so called Eshelby's "stress free trans­
formation strain" (Eshelby, 1957) or Mura's "equivalent eigenstrain" (Mura, 1985), it is
distinctive in the present setting since it is defined to include the effect of particle rotation
in accord with the definition of strain given in eqn (14).

By subtracting the uniform part of the stress, uij( = Cijklekl), at all points in the media,
the fluctuation term, ~aij(xp), is found to be [from eqns (32), (33), (44) and (46)]

(47)

(48)

Correspondingly, subtracting the uniform part of strain ekl from all points in the media
leads to a strain free boundary. Thus the boundary value problem defined by eqns (42),
(43), (44) and (45), for an inhomogeneity embedded in a homogeneous media, is reduced
to the following "auxiliary" problem for a homogeneous media with an "equivalent trans­
formation strain" in Y"

and

~aij.i = 0 in Y (49)

(50)

where the fluctuation term of the stress field, ~aij(xp), is given by eqns (47) and (48). The
solution of the above auxiliary problem leads to a relationship between the "equivalent
transformation strain" e~ and the fluctuation term ofthe strain ~eiixp)in the inhomogeneity
of the form given by

(51)

where Eijkl is an Eshelby type transformation tensor and superscript n refers to the strain
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field within the inhomogeneity (that is the strain field at a cell level). To keep the present
discussion focussed on the derivation of an effective tensor Cijk" we shall postpone the
discussion of the "auxiliary" problem to the next section.

Overall stiffness tensor
We can now proceed to derive the expression for the overall stiffness tensor C;jkl'

Equating the stress tensors at a cell, aij, obtained from eqns (26) and (32) using eqns (33)
and (46), we get

(52)

Note, again, that we denote the fluctuation stress and strain at a cell level, that is within
Vn, with a superscript n. Now, substituting for [;tl from eqn (51) and rearranging, the
fluctuation term L\.[;;:'" is found to be

(53)

Thus, from eqns (33) and (38), the "concentration" tensor Hmnkl is given by

(54)

where Imnkl is a fourth rank identity tensor defined in eqn (40). Substituting the "con­
centration" tensor in eqn (41), the fluctuation term of the stiffness tensor is found to be

(55)

After some manipulation the effective stiffness tensor can be simplified to

(56)

Note that the unknown effective stiffness tensor Cijkl occurs on both sides ofeqn (56). Even
for the simplest cases, a numerical effort is required in order to evaluate the effective stiffness
tensor.

Auxiliary problem
Though the method used here to solve the boundary value problem, stated in eqns

(49) and (50), is conceptually similar to the one used by Eshelby, the problem addressed
here is unique in that the definition of strain incorporates the effect of particle rotation,
which departs from the conventional analysis. However, by employing the "generalized"
displacement function <Pj(xp ) defined by eqn (13) such that

(57)

the form ofthe equations and solutions are, fortunately, reduced to those ofthe conventional
analysis. In the subsequent discussion, therefore, we shall confine ourselves to basic equa­
tions necessary for completeness of the presentation and such details which are not presented
elsewhere. For further details one may refer to literature such as Mura (1985).

Rewriting eqn (49) in terms of displacements, we obtain [from eqns (48), (49) and
(57)]

(58)

It can be seen that the contribution Cpqrse~.p in eqn (58) is equivalent to a body force acting
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in the xq direction. Problems of the type given in eqn (58) are often solved by employing
the so-called Green's function or the fundamental solution.

Let 'P.,,(x-x') be the Green's function, satisfying

(59)

where Cpqrs is the effective stiffness tensor and l5(x-x') is the Dirac delta function with the
property

L: F(x')I5(x-x')dx' = F(x). (60)

In eqn (59), the tensor 'PS/(x-x') represents the fundamental value of the "generalized
displacement" ticPs(x) in the infinite homogeneous media of stiffness Cpqrs subjected to a
concentrated force of unit magnitude acting at x' along the XI direction. From the Fourier
transform of eqn (59), the Green's function 'P;j is found to be

or

(62)

where

The "generalized displacement field" ticP;(x) due to "equivalent transformation strain"
£t, can be obtained by integrating the product of force Cpqrs£~.P and the Green's function
'P;q over the domain as

(66)

Since £rt is zero everywhere outside the inhomogeneity, the displacement field within an
inhomogeneity of elliptical shape, after integrating eqn (66) by parts, is obtained as (Mura,
1985)

ticP;(x) = Cpqr,f. £:;'P;q,p(x-x')dx',
v·

(67)

where V" is the domain of the inhomogeneity. For a uniform "equivalent transformation
strain" £t" the strain defined as ticPj,i (= tie;) is uniform within the inhomogeneity, given
by

(68)

where 'Pjq.P;(x-x') can be obtained from eqn (62). Thus, the solution of the boundary
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value problem [eqns (49) and (50)] is obtained in the form given in eqn (51), where E;jkl is
given by

(69)

and

where

~; = ~, (no sum on i),
a j

(70)

(71)

(72)

(73)

(74)

and U; are the half principal axes of the elliptical inhomogeneity.
For the two-dimensional case, the procedure to evaluate the tensor E ijkl is outlined in

the Appendix.

RESULTS AND COMPARISON

To demonstrate the applicability of the derived stress-strain law [eqn (37)], we study
the elastic stress-strain behavior of random packings of planar disks. The results of the
equivalent continuum model are compared with those obtained from computer simulation
method based on the discrete description discussed earlier in the paper. The details of the
computer simulation method are discussed elsewhere in Chang and Misra (1989).

The random packing of particles used in this study are shown in Fig. 1. The packings
are formed such that they represent a periodic space. It is seen that the two X as well as the
two Y boundaries are images ofeach other. Such a periodic space is a representative volume
of the granular solid, since the granular media can be constructed by repetitively stacking
this space. The packing parameters for the two packings are given in Table l. It is noted
that for calculations based on the present model, the inhomogeneity shape is taken to be
circular, i.e. a, = U2'

Effective modulus
The effective modulus computed from eqn (56) is compared with that obtained from

the computer simulation method to evaluate the accuracy of the "selfconsistent" averaging
method. In Figs 2 and 3, the ratio of effective modulus M, is plotted versus the ratio of
contact stiffnesses Ks/Kn. The modulus ratio Mr is taken to be the ratio of the modulus
based on eqn (56) and the modulus obtained from computer simulation. Also plotted in
Figs 2 and 3 is the ratio of modulus based on uniform strain theory and that obtained from
computer simulation. The modulus based on uniform strain theory is obtained from eqn
(34) and the first term in eqn (28).

The effective moduli based on eqn (56) exhibit an encouraging agreement with moduli
obtained from computer simulation. In contrast to the uniform strain theory, the present
method provides a better estimate of moduli over a wider range of contact stiffness ratios.
It is observed that the number of particles in the packing has little effect on the trends
displayed by the results, although the agreement with computer simulation results is slightly
improved.
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PACKING A

PACKING B

Fig. 1. Packing of circular disks.

Heterogeneity
The variations of local stress and strain are investigated to illustrate the heterogeneous

nature of these field quantities in granular solids and the ability of the present model to
capture the effect of heterogeneity. In Fig. 4 we plot the frequency distribution of the
three components of cell stress versus the percentage of cells obtained from the computer
simulation and the present methods for packing A. The cell stresses are computed based
on eqn (27). While the mean stress [based on a definition in eqn (30)] is the same for the
two methods, the computer simulation method shows greater inhomogeneity compared to
the present method. These results are for the loading condition: Byy = 0.01 % and
Bxx = Bxy = Byx = 0, and contact stiffnesses : Kn = 1750 kN m- 1 and Kg = 175 kN m- 1.

Table 1. Packing parameters for the packings in Fig. 1

Parameter

Particle diameter (number of particles)

Number of contacts
Coordination number
Area
Void ratio

Packing A

0.105 mm (60)
0.210 mm (84)

327
4.54

16.5 mm'
0.202

Packing B

0.10 mm (301)
0.12 mm (150)
0.15 mm (125)

1384
4.80

28.9 mm'
0.153
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Fig. 2. Modulus ratio M, versus the contact stiffness ratio K,/Kn for packing A.

In Fig. 5 the frequency distribution of the three components of strain at cell level
obtained from the present method are plotted versus the percentage of cells. The strains at
cell level are computed from eqn (38) for the above mentioned loading condition. The
figures show that the strain field is inhomogeneous within the media. Moreover, the normal
strain, Ifxx. and shear strain, }'~y = (G~y +G~x), do not vanish at the cell level, even though the
applied values ofthese components are zero. Similar results are obtained from the computer
simulation method.
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Fig. 3. Modulus ratio M, versus the contact stiffness ratio K,/Kn for packing B.
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loading based on: (a) computer simulation method, and (b) present model.

Variation of micro-mechanical quantities
We next investigate the applicability of the present method in predicting the micro­

mechanical quantities in the packing. In this context, the directional distributions of relative
displacements at the contacts in packing A are studied for the loading condition and contact
stiffnesses used above.

The directional distributions of relative displacements normal to and tangential to the
contact plane, obtained from the computer simulation method, the present method and the
uniform strain method, are plotted in Fig. 6. For a quantitative comparison of the relative
displacement distributions, Fourier approximations of the distributions were obtained as

I5(B) = ~(l +a2 cos 2B+b2sin 2B+a4 cos 4B+b4sin 4B). (75)

The coefficients C, a2, b2, a4 and b4 are given in Table 2 for the three methods. From the
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Table 2. Coefficients for Fourier approximation of relative displacement distributions

Method CxlO- 3 a2 b, a. b.

Computer simulation 1.6 -0.924 0.05 0.02 0.0
Normal displacement Present 1.6 -0.931 0.01 0.02 0.0

Uniform strain 1.6 -1.115 0.01 0.02 0.0

Computer simulation l.l 0.0 0.02 -0.627 0.0
Shear displacement Present l.l 0.0 0.02 -0.642 0.06

Uniform strain l.l 0.0 0.02 -0.667 0.05

Fourier approximation it is seen that the relative displacements in the normal direction to
the contact are larger for the uniform strain theory vis avis the present method and the
computer simulation method. These relative displacements show close agreement for the
present method and the computer simulation method. The relative displacements in the
tangential direction show little variation for the three methods, although they tend to be
higher for the present and computer simulation methods. This implies that the uniform
strain method will give a stiffer response in comparison with the other two methods as seen
in Figs 2 and 3.

CONCLUSIONS

An effective stress-strain relationship is derived for a representative volume ofgranular
solids based upon the micro-mechanical methodology and "self consistent" averaging
technique. The primary aim of this paper is to account for the effect of heterogeneity of
granular media in the stress-strain model. To facilitate this, the granular solid is considered
to be composed of continuum cells made of a single particle and the associated void space.
For each cell a local constitutive law is established by considering the interaction of particle
in the cell and its neighbors. The local stiffness tensor depends on the number of inter­
particle contacts, the relative positions of the neighboring particles and the inter-particle
contact stiffnesses. The local constitutive law is then utilized to obtain the overall stress­
strain relationship of a representative volume containing several particles based upon the
"self consistent" averaging method. In the "self consistent" method, the heterogeneity of
the granular material is accounted by employing a "concentration" tensor which relates
the overall strain to the local strain for each cell. The "concentration" tensor is obtained
by treating each cell in the granular assembly to be an inhomogeneity embedded in an
equivalent homogeneous media.

In the equivalent continuum model, based upon the "self consistent" method, the
requirement of exactly satisfying the equilibrium and continuity conditions at each location
in the granular media is relaxed. In spite of these simplifying assumptions, the model
provides a viable method of accounting for heterogeneous nature of granular media. The
advantage of the approach presented in this paper is that heterogeneity of deformation is
captured without resorting to a discrete computer simulation approach in which each
particle is tracked during the deformation process and therefore a much larger com­
putational effort is required.

Applicability of the derived overall stress-strain relationship is investigated by com­
paring results with the computer simulation method. Results of the derived micro-mech­
anical model show that the model provides an improved prediction of the moduli and micro­
mechanical variables in comparison to a model without the consideration of heterogeneity.
Frictional granular materials have shown evidence of a large amount of heterogeneity
before failure or strain localization. It is believed that this model can be potentially extended
to non-linear granular systems.
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APPENDIX

For the two-dimensional case the tensor E'i*' is evaluated for' J -+ O. Thus the components of vector ~ are
reduced to [from eqns (71)-(74)]

cos 0 sin lJ
~,= --- and ~, = --.

a, 0,
(A[)

Furthermore the integral in eqn (60) is reduced to the form J~' R(cos 0, sin lJ) dlJ, where R(cos lJ, sin lJ) is a rational
function of cos 0 and sin O. This integral over 0 can be converted into a contour integral in the complex plane b)
setting Z = e'o, and substituting

Thus

where

dZ
dO= iZ'

. [ ( [)
smO=2i Z-Z'

(A2)

(A3)

(A4)

(A5)

(A6)

i = J':"'I, P,PJq(Z) and Q(Z) are polynomial functions of Z, and Res [.] denotes the sum of the residues offunction
P,PJq(Z)/Q(Z) existing within the unit circle IZI = I.

The polynomial Q(Z) is given by

where

Q(Z) = q,Z9+ q,Z' +q,Z'+q,Z'+q,Z, (A7)
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q, (C33 -oc2C•• -2iocC34)(C,,-oc2Cn -2iocC12)

+(C23 -iocC2.)(2iocC13 + 2oc 2C1• + OC 2C23 -ioc3C24)+ (ocCI• +iC13)2, (AS)

q2 -4oc3C.4(OCC22 +iC I2) -4iocC34(OC2C22 + CII) -4Cll(iIXCI2-CII)+4oc3C24(IXC2. +i(C23 + C'4»
-4CI3(ioc(C23+C'4)-CI3)' (A9)

q3 21X 2C••(3oc2C22 +C,,) +SOC2C12C34 +2C33 (1X2C22 +3C,, )

-2(OC2C24 +C13 )2 -4(oc'Ci. +Cr3) +2oc2(C23 +C,.)2, (AIO)

ii, = conjugate (q,), ii2 = conjugate (q2)

and

where a I and a2 are the major and minor principal axes of the ellipsoidal inhomogeneity.
The polynomials P'jkl(Z) are given by

(All)

(AI2)

(A13)

where coefficients iijkl and Sijkl are complex conjugates of 'ijki and Sijk;, respectively. The polynomials Pijkl(Z)

possess the following symmetry P ijki = P ijlk = Pj'kl' Thus there are only nine independent P'jkl(Z) given by

(AI4)

(AIS)

Here,

C II = C'"I' C 12 C II '2' C 13 = C lI2 !> C 1• = C lI22, (A23)

C 21 = C 12I " C 22 = C 1212, C2l = C 1221 ' C2• = C I222 ' (A24)

C31 = C 211l , Cl2 = C2112 ' Cll = C212 1> C34 = C212 2> (A25)

C41 = C22 'I, C42 = C2212 ' C. 3 = C2221 , C44 = C 2222 • (A26)

Since the Q(Z) is a polynomial ofdegree 9 with unknown coefficients, a numerical effort is needed to evaluate
Jijkl'


